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• Mümtaz Ulaş Keskin, Antalya, Turkey.

•Merdangeldi Bayramov, Turkmen State University, Ashgabat, Turkmenistan.

• Anya Bindra, Gems Modern Academy, Dubai, UAE.



Discussion
Let
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See the solution to October 2019 problem for the equation above. Now we have
that
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From (1) it follows that
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Now by letting x = π, in the two equations above we get that
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All submitted solutions had a different solution using the identity tan(x) =

cot(x)− 2 cot(2x).
There is a very interesting geometrical interpretation as well.


